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Abstract
The use of heterogeneous systems has become widespread and popular in the past decade with more
than one type of processor, such as CPUs, GPUs (Graphics Processing Units), and FPGAs (Field
Programmable Gate Arrays) etc. A wide range of applications use both CPU and GPU to leverage
the benefits of their unique features and strengths. Therefore, collaborative computation between
CPU and GPU is essential to achieve high program performance. However, poorly placed global
synchronization barriers and synchronous memory transfers are the main bottlenecks to enhanced
program performance, preventing CPU and GPU computations from overlapping.

Based on this observation, we propose a new optimization technique called hetero-sync motion
that can relocate such barrier instructions to new locations, resulting in improved performance in CPU-
GPU heterogeneous programs. Further, we propose GSOHC, a compiler analysis and optimization
framework that automatically finds opportunities for hetero-sync motion in the input program and
then performs code transformation to apply the optimization. Our static analysis is a context-sensitive,
flow-sensitive inter-procedural data-flow analysis with three phases to identify the optimization
opportunities precisely. We have implemented GSOHC using LLVM/Clang infrastructure. On
A4000, P100 and A100 GPUs, our optimization achieves speedups of up to 1.8x, 1.9x and 1.9x over
the baseline, respectively.
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1 Introduction

Heterogeneous computing is a programming paradigm that uses more than one type of pro-
cessor, such as a CPU, in conjunction with accelerators, such as GPUs (Graphics Processing
Units) and FPGAs (Field Programmable Gate Arrays). In a wide range of applications,
CPUs and GPUs are both used, and both have strengths and limitations, which are essential
for high-performance computing. Over the decades, several compiler optimizations [45, 6, 38]
have been proposed to improve the performance of CPU programs. In the same vein, numer-
ous recent research works [12, 33, 51, 1, 2] have developed new analyses and optimizations to
enhance only GPU (device) side performance in the CPU-GPU heterogeneous applications.
Nevertheless, CPU- and GPU-only optimization strategies are incapable of realizing the full
potential of heterogeneous computing. For example, a GPU can remain idle during memory
copy to CPU, and specialized global optimizations [23, 4, 27] are needed to improve overall
performance by efficiently managing host-to-device data transfers.
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1 void foo(int *x, int size2 )
2 {
3 ...
4 if(k < y_points )
5 x[k] = x[0] + y_points ;
6 ...
7 }
8 void main (){
9 ...

10 kernel1 <<<grid1 , block1 >>>(d_u ,...) ;/* Device -side computations */
11 cudaMemcpy (u, d_u , size1 , cudaMemcpy DeviceToHost ); /* Sync */
12 ...
13 new_data = processData (data); /* Host -side computations */
14 ...
15 cudaMemcpy (d_u , new_data , data_size , cudaMemcpy HostToDevice );
16 kernel2 <<<grid2 , block2 >>>(d_u ,...) ;/* Device -side computations */
17 cudaMemcpy (v, d_u , size2 , cudaMemcpy DeviceToHost );
18
19 cudaDeviceSynchronize ();/* Sync */
20 ...
21 /* Host -side computations */
22 foo(v, size2 );
23 ...
24 for(int i=0; i< size2 ; i++)
25 v[i] = v[i] + x_points ; ...
26 }

Figure 1 Sample CUDA code snippet showing blocking calls, host- and device-side computations.

In a similar vein, heterogeneous systems suffer from another important global performance
problem: the CPU being idle after launching the kernel and allocating the task to the GPU,
resulting in the underutilization of processors. The importance of this problem has been
revealed through several manual optimization efforts [7, 46, 55, 47] of several domain-specific
heterogeneous applications (efficiently distributing the workload between CPU and GPU).
Further, in a performance study by White III et al. [53], manual optimization of CPU-GPU
computation overlap yielded significantly better performance than most other optimization
methods, such as communication-computation overlap etc. A poorly placed synchronization
statement or blocking call is most often the reason for the CPU idleness in a heterogeneous
system since it prevents CPU and GPU computations from overlapping.
Optimization Opportunities and Associated Challenges. Consider a sample example
in Figure 1. There are two device kernel launches from the CPU function main, one at
Line 10 and the other at Line 16. A device kernel is a function that runs asynchronously
with CPU code on multiple cores of a GPU (in SIMT [20] fashion), and we refer to its
computations as device-side computations. Programmers must explicitly add synchronization
calls (e.g. cudaDeviceSynchronize call at Line 19) in their code to ensure that CPU-
side computations halt until the device-side computations are complete. Further, memory
transfers (e.g. cudaMemcpy calls at Lines 11, 15, and 17) also act as synchronization/blocking
calls in the CUDA programming model. We can see that the host-side computation at Line 13
is not dependent on the device-side kernel computation at Line 10, as it does not use variables
u, d_u and size1. Nevertheless, the host-side computation still awaits for completion of the
device kernel due to the poorly placed synchronous data-transfer call at Line 11, resulting
in suboptimal performance. As a result, as shown in Figure 2 (above the horizontal dotted
lines), the program takes t2 − t0 time to execute the program statements from Line 10 to
Line 13. Alternatively, if the barrier is relocated after the host-side computation (say, from
Line 11 to Line 14), the CPU will not wait for the kernel to complete, resulting in parallel
execution of host- and device-side computations. Figure 2 (below the horizontal dotted lines)
indicates that the time will then reduce from t2 − t0 to t1 − t0. This single synchronization
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Figure 2 Execution of host- and device-side computations before and after hetero-sync motion.

statement relocation has opened a new avenue for optimizing program execution time. We
call this optimization hetero-sync motion.

Manually identifying the target location for hetero-sync motion on a given synchronization
statement is challenging. Firstly, for the synchronization statement at Line 11, it is required
that the relocation target cannot be a successor of Line 15, which uses the variable d_u.
Further, alias relationships between variables should be taken into account when performing
this verification. Secondly, for the synchronization statement at Line 17, simply checking for
data dependency may result in incorrectly moving it to Line 5, which is not guaranteed to get
executed in all program paths, unlike the source location (this may also result in redundant
or spurious data transfers). Thirdly, for the synchronization statement at Line 19, although
it has no argument variables, to find its target location, we need to consider the farthest
successor in the execution path for performance without violating previous synchronization
dependencies. Fourthly, a kernel call (Line 16) can be associated with several synchronization
calls (Line 17 and Line 19), and the challenge is to relocate all these synchronizations to
the most suitable target location. The code snippet in Figure 3a from the xlqc benchmark
program, which computes Coulomb and exchange matrices for quantum chemistry simulations,
exemplifies such challenges in real-world applications. Here, memcpy operations at Lines 8
and 13, though dependent on Line 26, cannot be directly moved because doing so would
make them conditional on the for loop at Line 19 resulting in correctness issues or multiple
executions that degrade performance. Therefore, we need a dedicated analysis that addresses
these challenges precisely and efficiently.

Furthermore, real-world programs exhibit the complexity of finding optimal target loca-
tions for synchronization statements across functions. Consider the code snippet in Figure 3b,
from CLINK [11] (Compact LSTM INference Kernel), which performs efficient sequence predic-
tion by minimizing memory and computation overhead in Long Short-Term Memory (LSTM)
models. The synchronous memcpy call at Line 8 (along with cudaDeviceSynchronize call
at Line 6) can be moved outside the lstm_n5 function and placed after Line 19, thereby
overlapping the kernel computation (at Line 5) with init (at line 18). Identifying such
optimization opportunities requires a thorough analysis of call sites, precise mapping of
function arguments, and context- and flow-sensitive analysis, posing significant challenges
even for experienced developers. Moreover, the subsequent transformation requires adjusting
function definitions, callsite arguments, and relocating instructions across functions, as seen
in this example, where the memcpy’s arguments at Line 3 must be moved to the main (caller)
function and passed as arguments to the lstm_n5 (source) function. Further, the memcpy
statement in lstm_n5 function is invoked from two contexts (Lines 16 and 19), leading to
the percolation of synchronization statements from both contexts to the target location. To

ECOOP 2025
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1 void main (){
2 ...
3 while (...) {
4 if ( use_dp )
5 cuda_mat_J_PI_dp < < <... > > >(...);
6 else
7 cuda_mat_J_PI < < <... > > >(...);
8 cudaMemcpy ( h_mat_J_PI , dev_mat_J_PI ,

size_N_BYTES , cudaMemcpy DeviceToHost );
9 if ( use_dp )

10 cuda_mat_K_PI_dp < < <... > > >(...);
11 else
12 cuda_mat_K_PI < < <... > > >(...);
13 cudaMemcpy ( h_mat_K_PI , dev_mat_K_PI ,

size_N_BYTES , cudaMemcpy DeviceToHost );
14 for (int a = 0; a < p_basis ->num; ++a) {
15 for (int b = 0; b <= a; ++b) {
16 ...
17 }
18 }
19 for (int i = 0; i < n_pbf ; ++i)
20 { ...
21 for (int j = 0; j < n_pbf ; ++j)
22 {
23 int b = h_pbf_to_cbf [j];
24 if (a < b) { continue ; }
25 ...
26 ▶h_mat_J [ab] += h_mat_J_PI [ij ];
27 h_mat_K [ab] += h_mat_K_PI [ij ];
28 }
29 } ...
30 } ...
31 }

(a) Code snippet from xlqc [58]

1 long lstm_n5 (... , float * y)
2 { ...
3 float *d_y;
4 ...
5 lstm_inference < < <... > > >(... ,

d_outB , d_y);
6 cudaDeviceSynchronize ();
7 ...
8 cudaMemcpy (y, d_y , ... ,

cudaMemcpy DeviceToHost );
9 ...

10 }
11
12 int main(int argc , char* argv [])
13 { ...
14 for (int n = 0; n < repeat ; n++)
15 { ...
16 lstm_n5 ( sample_input , inW ,

intW , intB , outW , &outB ,
infer1_out );

17 ...
18 init(work_path , input_filename

, weight2_filename ,
sample_input , in , intW ,
intB , outW , &outB);

19 lstm_n5 ( sample_input , inW ,
intW , intB , outW , &outB ,
infer2_out );

20 ▶...
21 free( infer1_out );
22 free( infer2_out );
23 ...}
24 ...}

(b) Code snippet from clink [11]

Figure 3 Code snippet demonstrating opportunities in hetero-sync motion. The yellow box
highlights synchronization statements, while the blue triangle (▶) marks the destination location.

address these complexities and reduce programming overhead, we propose an automated
framework, GSOHC, to identify and move synchronization statements to optimal target
locations, streamlining the code transformation process.
Existing Approaches and the Need for a New Solution. Hetero-Sync Motion
optimization is analogous to compiler optimizations [42, 19, 16, 41, 17, 43] that relocate
inefficient synchronization in the context of alternative programming paradigms such as
MPI (Message Passing Interface) and CPU TLP (Thread-Level Parallelism). However,
these approaches are inadequate to address the problem of hetero-sync motion due to the
semantic differences in synchronization operations: (1) APIs such as cudaMemcpy in CPU-
GPU heterogeneous programs perform both synchronization and data-transfer operations,
unlike wait calls in TLP or MPI paradigms that only handle synchronization, (2) by default,
synchronization statements in CUDA execute in the default stream, and data transfer begins
only after all previous CUDA calls are completed, whereas MPI wait calls wait for the
completion of a specific communication call based on the corresponding request_ID (similar
to TLP). Using TLP approaches [42, 19, 43] for hetero-sync motion may percolate sync

calls into divergent branch paths (e.g., moving Line 17 to Line 5 and Line 25 in Figure 1)
resulting in redundant execution of data transfers that may adversely affect the correctness
and performance of a CPU-GPU program. On the other hand, MPI approaches [16, 41, 17]
require a one-to-one pairing of wait calls with non-blocking communication calls, and handling
each pair separately through data dependence checks; whereas, in CPU-GPU heterogeneous
systems, the challenge lies in consolidating multiple synchronization calls surrounding a
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single kernel call into one target location. Further, previous works [23, 27, 4, 26, 30] have
focused on CPU-GPU global optimization problems through techniques such as multi-kernel
computation overlap and data transfer–kernel computation overlap using hybrid runtime
and compile-time approaches. However, they do not address the synchronization relocation
challenges posed by hetero-sync motion. Therefore, new static data-flow analysis approaches
are needed to address synchronization bottlenecks in CPU-GPU heterogeneous programs by
analyzing the flow of multiple synchronization calls and their associated data.
GSOHC. In Figure 2, below the horizontal dotted line, we can see how GSOHC pushes the
synchronization statement after the host-side computation, facilitating overlap between host-
side and device-side computations, thereby enhancing overall program performance. GSOHC
does not optimize the host-side nor device-side computations, but it improves performance
by only pushing the barrier to a successor program point in the execution path. Our static
analysis is a context-sensitive, flow-sensitive inter-procedural data-flow analysis with three
phases to identify the optimization opportunities precisely: (1) identifies the poorly placed
synchronization statements in the code and maps them to target location sets (not unique
since dependencies can be found in multiple program points in different execution paths),
(2) updates the mapped location sets based on the control flow and contextual information,
and (3) unifies the location sets so that each synchronization statement in a given context is
mapped to a unique location.

We implemented our framework using LLVM/Clang infrastructure [36, 31]. GSOHC takes
the input program in LLVM/IR format and produces the optimized IR with overlapping
host-side computation and device-side computation, resulting in performance improvement.
The key contributions of this work are as follows:

A novel idea of hetero-sync motion optimization that relocates synchronization state-
ments from a source location to a target location to improve performance in CPU-GPU
heterogeneous programs.
A novel compiler framework with three stages, including an interprocedural, context- and
flow-sensitive data-flow analysis pass to identify optimization opportunities and determine
optimal target locations for synchronization statements.
A transformation pass that automatically relocates barrier statements to an optimal
location so that host-side and device-side computations can overlap. Implementation of
both passes in the LLVM infrastructure.
An extensive evaluation of our approach and comparison with the base code. On A4000,
P100, and A100 GPUs, our optimization achieves up to 1.8x, 1.9x, and 1.9x speedups
over baseline, respectively.

2 Formalization and Overview

In this section, we discuss some preliminaries that are required to explain our static analysis
in Section 3, and then we formally define our hetero-sync motion optimization.

We use the programming language in Figure 4 for our formalization. While we use this
language to simplify our presentation, our implementation (see Section 5 for details) works
on LLVM IR. It is easy to correlate every analysis step discussed in this paper with LLVM
IR instructions. Our implementation supports full LLVM IR, including pointer operations,
though we do not show them in Figure 4. Furthermore, we consider heterogeneous computing
systems with a CPU and a single GPU setup. Although our ideas are generic, we use the
CUDA [8] programming model whenever we discuss concrete semantics.

ECOOP 2025
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Program P = s; m+

Method m = H(v⃗){sh} | D(v⃗){sd}
Host statement sh = call H(e⃗) | sync | s | sd | return v

Device statement sd = call D(e⃗) | s

Synchronization call sync = call global_sync_api(e⃗)
Expression e = v | c | e1 ⊕ e2 | ¬e | e1 ∨ e2 | e1 ∧ e2 | e1 ⊗ e2

Statement s = v := e | if(e) s else s | while(e) do s | s; s | skip
v ∈ Variable c ∈ Constant v⃗ = (v1, v2, . . . vn)
⊕ ∈ {+, −, ×, ÷} ⊗ ∈ {<, >, ≤, ≥, =, ̸=} e⃗ = (e1, e2, . . . en)

Figure 4 Syntax of the input program.

The program P is a heterogeneous program consisting of statements and methods that can
run on a CPU or a GPU. D(v⃗) represents a method whose body of statements gets executed
on a GPU (device) 1. H(v⃗) represents a method executed on a CPU (we do not specify the
return type for simplicity). The statement sync denotes function calls that serve as global
barriers to synchronize CPU and GPU. In CUDA programming model, global_sync_api(e⃗)
can represent cudaMemcpy or cudaDeviceSynchronize calls. In addition, variable accesses
v, expressions e, assignment statements (v := e), branch and loop instructions, etc., are all
standard programming constructs. We now formally define some terminology that is required
to introduce hetero-sync motion optimization.

▶ Definition 1 (Device-side Computation). We say an operation d is device-side computation
if it resides within the body of a method D executed on a device (using multiple threads in
SIMT fashion).

▶ Definition 2 (Host-side Computation). We say an operation h is host-side computation
if it resides within the body of a method H executed on a host (using one or more threads in
SIMD or MIMD or SISD fashion).

▶ Definition 3 (Synchronization Call, sync). In a heterogeneous program P, a program point
or statement si within a host-side method H is called a synchronization call (or sync) if it
invokes dedicated APIs that cause H to wait at si until all device-side methods D1,D2, . . . ,Dn

launched prior to si complete execution.

For example, cudaMemcpy call (Line 17, Figure 1) and cudaDeviceSynchronize call (Line 19,
Figure 1) are synchronization calls.

The goal of GSOHC is to identify large regions of code with host-side computations that
are independent of a sync and result in overlap with device-side computations, maximizing
performance through concurrent execution.

▶ Definition 4 (Data Dependence). Given two program statements si and sj in a hetero-
geneous program P, we say sj is data dependent on si or vice versa iff

(rd(si) ∩ wr(sj)) ∪ (wr(si) ∩ wr(sj)) ∪ (wr(si) ∩ rd(sj)) ̸= ϕ

where rd(si) gives the set of variables read by statement si and wr(si) gives the set of variables
written by statement si.

1 We use ‘GPU’ and ‘device’ interchangeably and, similarly, ‘host’ and ‘CPU’ in this paper.
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For example, in Figure 1, Line 17 is data dependent on Line 5, since Line 5 reads and writes
to the same data array that is written by Line 17.

▶ Definition 5 (Statement Region, Ω). In a program P with Inter-procedural Control Flow
Graph ICFG(P), a statement region Ω(pi, pj) is the sequence of program statements between
two program points pi and pj (excluding pi and pj), where the basic block of pj is a successor
of the basic block of pi in ICFG(P).

▶ Definition 6 (Safe Region, R). A statement region Ω(pi, pj) is a safe region, R(pi, pj), if
no statement in Ω(pi, pj) is data-dependent on the statement at pi.

▶ Definition 7 (Refined Safe Region, K). A refined safe region, K(pi, pj) is derived from a
safe region R(pi, pk) (represented as R(pi, pk) ⊢ K(pi, pj)) iff:

(pi dominates pj) ∧ (pj post-dominates pi) ∧ (pj dominates pk)

While R considers only data dependency, K considers both data dependency (from R)
and control dependency (via dominance relations). A statement pi dominates pj if all paths
from the entry node to pj pass through pi, and pj post-dominates pi if all paths from pi to
the exit node pass through pj .

▶ Definition 8 (Unified Safe Region, U). A unified safe region, U(pi, pj) corresponds to a
unique refined safe region, K(pi, pm), from the set of refined safe regions for pi {K1(pi, p1),
K2(pi, p2), K3(pi, p3), . . ., Kn(pi, pn)} iff:

∃m∀s, m, s ∈ {1, . . . , n} | (pm dominates ps)

While the refined safe region K addresses control and data dependencies, multiple regions
for pi may result in redundant executions of a sync call along a path. The unified region U
uniquely updates and unifies these regions for pi.

▶ Definition 9 (Hetero-Sync Motion). Given a program point psrc with a sync call in a
host-side method H, if U(psrc, pdst) is a unified safe region, relocating the sync from psrc

to pdst to enable concurrent execution of a host-side statement sh ∈ U(psrc, pdst) and a
device-side computation statement sd is called as Hetero-Sync Motion.

Since sync calls block host-side and device-side computations from overlapping, our
optimization Hetero-Sync Motion aims to move the sync call from program point psrc to
pdst to enable concurrent execution and improve performance.
Example. In Figure 1, Ω(Line 17, Line 5) is an example of a statement region, which is
also a safe region i.e., R(Line 17, Line 5). Since Line 5 does not post-dominate Line 17, it
cannot form a refined safe region. Hence, Line 17 and Line 3 form a refined safe region, i.e.,
K(Line 17, Line 3). Similarly, another refined safe region is K(Line 17, Line 23). The unified
safe region becomes U(Line 17, Line 3), indicating that hetero-sync motion optimization
percolates the sync from source Line 17 to target Line 3.

Overview. Figure 5 depicts the pipeline of our GSOHC. Given a program P as input,
GSOHC performs hetero-sync motion optimization (see Definition 9) on P and produces
an optimized program Popt automatically. GSOHC consists of two major components: a
top-down inter-procedural context- and flow-sensitive data-flow analysis pass to identify the
opportunities for hetero-sync motion optimization and a transformation pass to optimize
the input code using the analysis results. Further, our static analysis framework follows

ECOOP 2025
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Figure 5 Complete pipeline of GSOHC.

a three-stage approach. The first stage identifies target location sets for poorly placed
synchronization statements, represented as safe regions (see Definition 6). The second stage
updates these safe regions to maintain the control-flow dependency between the source and
target locations to form refined safe regions (see Definition 7). The third stage unifies each
target location set into a single, unified safe region (see Definition 8), ensuring each sync
statement is mapped to a unique location. Finally, the transformation pass relocates sync

statements from source to target locations, to enhance the performance of the input programs.
We will discuss the different stages of the analysis pass in Section 3 and then discuss the
transformation pass in Section 4.

3 Static Detection of Hetero-Sync Motion Opportunities

Our static analysis for identifying opportunities of hetero-sync motion optimization takes a
program P as input and outputs a map M, which maps a sync statement to a set of target
statement(s) in P. The sync statement representing a global barrier call (see Definition 3)
in P is considered as a source location, and the corresponding target location (singleton
set at the end) is identified by our static analysis based on the concept of unified safe
region (Definition 8). We will discuss the three stages of our static analysis in the following
sections: finding target location sets (Section 3.1), updating target location sets (Section 3.2),
and unifying target location sets (Section 3.3).

3.1 Finding Target Location Sets
The key idea is to perform a top-down context- and flow-sensitive inter-procedural data-flow
analysis to identify the hetero-sync motion optimization opportunities in the form of safe
regions (see Definition 6). Specifically, our analysis reports for each sync statement at psrc

2

a set of target locations, which is a collection of pdst program points corresponding to safe
regions identified in multiple execution paths.

Figure 6 shows the transfer function rules of our static analysis for statements in the
language described in Figure 4. The first rule shows that if a program statement s is a
synchronization call (see Definition 3), the analysis collects the variables that are read and
written by s into sets R and W, respectively, and then inserts s into the set Σ. In this paper,
we refer to the sets R and W as the read set and the write set, respectively, representing the
variables that are read from and written to by the sync statements. Likewise, we refer to Σ

2 We use the words ‘source statement’ and sync interchangeably, and, similarly, the words target and
destination in this paper.
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[SYNCHRONIZATION CALL]

s : call global_sync_api(e⃗) ei ∈ e⃗

Rs
out := Rs

in ∪ rd(ei) Ws
out := Ws

in ∪ wr(ei) Σs
out := Σs

in ∪ {s} µs
out[s] := {s}

[HOST FUNCTION CALL]

s : call H(e⃗) s1 : entryPoint(H)
Rs1

in := Rs
in Ws1

in := Ws
in Σs1

in := Σs
in µs1

in := µs
in Γ := Γ · s

[ASSIGN]

s : v := e var ∈ rd(e) w ∈Ws
in r ∈ Rs

in (var ⊙ w ∨ v ⊙ w ∨ v ⊙ r)
Rs

out := ∅ Ws
out := ∅ Σs

out := ∅ ∀src ∈ Σs
in µs

out[src] := {s}

[DEVICE FUNCTION CALL]

s : call D(e⃗) ei ∈ e⃗ vr ∈ rd(ei) vw ∈ wr(ei) w ∈Ws
in r ∈ Rs

in

(vr ⊙ w ∨ vw ⊙ w ∨ vw ⊙ r)
Rs

out := ∅ Ws
out := ∅ Σs

out := ∅ ∀src ∈ Σs
in µs

out[src] := {s}

Figure 6 Transfer function rules for our flow- and context-sensitive static analysis. Here, rd(e)
and wr(e) denote the sets of variables read and written by the expression e, respectively. Further,
the target map µ stores each sync statement with its corresponding set of target locations.

as the synchronization set, which stores the sync statements. In the rule, Rs represent the
flow-sensitive instance of the data-flow fact R at program point s, while sets Rs

in and Rs
out

represent the data-flow facts flowing to and from statement s (similarly for W, Σ and µ).
Note that for the simplicity of the design of our static analysis, we have assumed that each
basic block in an ICFG contains a single program statement.

As the analysis aims to identify an optimization opportunity in the form of safe region
R(psrc, pdst), the first rule involves identifying the start of a safe region at the program point
s 3 (i.e., s represents psrc here). This rule also initializes the target locations (end of safe
regions) of s by adding itself to the set µs[s], which other rules can update later. We refer to
µ as target map, which stores the mapping of a sync statement to the set of target locations
where it can be percolated.
Example. In Figure 7, cudaMemcpy call at Line 19 reads from arr_gpu and writes to
arr_output_gpu. Hence, the read set and the write set are {arr_gpu} and {arr_output_gpu},
respectively. Further, the synchronization set includes Line 19, and the target map µ maps
Line 19 to itself, i.e. µ[Line 19] = {Line 19}.

The second rule handles host function calls. As the analysis is inter-procedural, it analyzes
the callee host function at each call site. It first propagates the data-flow facts from the
call site to the entry point of the callee and appends the call site to the call-string Γ, which
stores the function calling context (i.e., caller-callee sequence as a string) and then analyzes
the callee. In our analysis, we restrict the length of the call-string to 4.
Example. In Figure 7, the function main invokes function foo at Line 21. Hence, the
data-flow facts at the call site are propagated to the entry point of function foo (Line 4). The

3 Whenever we refer to a program statement, we refer to it in a given calling context Γ, i.e. s ≡ (Γ, s).
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1 void foo (... , arr_output_gpu ,...)
2 {
3 /* entry point of function foo */
4 int *x = malloc (n * sizeof (int));
5 ...
6 if(pred){
7 for(i=0;i<n;i++){
8 x[i] = arr_output_gpu [i];
9 }

10 }
11 ...
12 return ;
13 }
14 void main (){
15 ...
16 /* Device -side computation */
17 cuda_kernel <<< grid , block >>>(..., arr_gpu );
18 /* barrier */
19 cudaMemcpy ( arr_output_gpu , arr_gpu , size , cudaMemcpy DeviceToHost );
20 ...
21 foo (... , arr_output_gpu ,...) ;
22 ...
23 }

Figure 7 Sample code with hetero-sync motion optimization opportunity.

corresponding read set, write set, synchronization set, and target map for Line 4 are: Rs
in =

{arr_gpu}, Ws
in = {arr_output_gpu}, Σs

in = {Line 19}, and µs
in = (Line 19, {Line 19}).

The analysis also appends the call site (Line 21) to the call-string Γ, i.e. Γ := Γ . Line 21.
The next rule addresses the assignment instruction v := e involving RAW (Read-After-

Write), WAR (Write-After-Read), and WAW (Writer-After-Write) dependencies. The analysis
checks for any variable var read in expression e (i.e., var ∈ rd(e)) that aliases with variable
w in the write set (Ws

in) of the propagated sync statements at the program point s, thereby
detecting a RAW dependency, represented as var ⊙ w. Here, x⊙ y indicates that x and y

may refer to the same memory location (i.e. potential aliases). Further, for the variable v

written in the assignment statement s, the analysis checks for WAR and WAW dependencies
by examining the alias relationship between v and the variables in the set Rs

in ∪Ws
in. If a

dependency exists, it creates a mapping from the propagated sync statements in µs to s,
marking s as the target. This indicates the end of a safe region R for a sync statement and,
thus, an optimization opportunity for hetero-sync motion optimization has been found. Note
that the analysis terminates the safe regions for all the sync calls that reach s because after
the code transformation, even if a single sync relocates to s, it becomes a blocking call for
the host, and hence it would not be beneficial to extend the safe region of other propagated
synchronization calls. Therefore, the analysis reinitializes the data structures Rs, Ws, and
Σs to identify new optimization opportunities in the unanalyzed code.
Example. In Figure 7, the assignment statement at Line 8 reads from array arr_output_gpu,
which was previously written at Line 19. Due to this RAW data dependence, the analysis
updates the target set for Line 19 in map µ to {Line 8}, i.e., µ[Line 19] := {Line 8}, followed
by the re-initialization of other data-flow facts (R, W, and Σ).

The fourth rule addresses device function calls. Since sync statements cannot be percolated
into device functions, there is no need to analyze the code in these functions. This rule
checks the data dependency between the function arguments passed at the calling context
and the data-flow facts propagated to that program point. The effect of this rule is similar
to that of an assignment statement (discussed above).

For all other program statements, the analysis directly copies the data-flow facts for
propagation, i.e., Rs

out := Rs
in (Similarly for W, Σ, and µ). Upon completing the analysis of



S. K. Basu and J. Vedurada 9:11

a function f , the framework consolidates the data-flow facts from each return statement sr

of f and propagates them to each successor succ of the corresponding call site in the caller
function (found in the call-string Γ). That is, Rsucc

in := Rsucc
in ∪Rsr

out (Similarly for W, Σ,
and µ). The call site is then removed from the call-string Γ.
Example. The data flow facts corresponding to the return statement (Line 12, Fig. 7) in
function foo are copied to the successor (Line 22) of the call site (of function foo).

Our analysis handles branches and loops by performing join operations on data-flow facts
at control-flow merge points. The confluence operator of the analysis is a union, meaning
the data-flow facts at the entry of a basic block (in sets) n in a CFG are the union of the
out sets of all predecessors of n.

3.2 Updating Target Location Sets
After the analysis in the previous step terminates, GSOHC retrieves the target location
set for each sync statement (from map µs at the main function’s exit statement s) and
provides this information in map M as input to the current step. The target location sets
computed in the previous step respect data dependencies but do not account for control-flow
dependencies. For example, consider the sync call at Line 19 in Figure 7. The analysis in
the previous step identifies the data dependency between the write to arr_output_gpu in
cudaMemcpy call at Line 19 and the read of the same variable at Line 8 (in function foo,
called at Line 21). Hence, it terminates the safe region at Line 8 and maps this as a target
location for the sync call at Line 19. However, relocating cudaMemcpy synchronization call
from Line 19 to Line 8 would make its execution conditional on the value of pred, unlike
in the original program where it executes on all paths. Thus, this step validates the target
mappings M reported by the previous step and updates invalid target locations with valid
ones by checking control-flow dependency through Algorithm 1.

For each sync statement src (source) and its corresponding target location dst (destina-
tion), Algorithm 1 validates if src dominates dst and dst post-dominates src, establishing a
dom-pdom relationship. If validation fails, the algorithm iteratively identifies the farthest suc-
cessor st from src that satisfies the dom-pdom relationship, updating st as the target location
and thus establishing a refined safe region (see Definition 7) from src to st. We propose a
context-sensitive, demand-driven algorithm for determining inter-procedural dom-pdom rela-
tionships between source and destination instructions. Our approach utilizes the transitivity
property of dominance (if sa dominates sb and sb dominates sc, then sa dominates sc) and
extends LLVM’s intra-procedural dom-pdom tree analysis [34] to handle inter-procedural
relationships. Further, unlike previous work [18] that exhaustively computes dominance
relationships for all node pairs in the Inter-procedural Control Flow Graph (ICFG), our
targeted analysis efficiently focuses only on the specific dom-pdom relationships required for
our framework.

To present our algorithm, we extend the source and destination call-strings, Γsrc and
Γdst, by appending the source instruction and destination instruction, respectively. We
refer to this augmented data structure as contextual path K. For example, the source and
destination contextual paths are Ksrc = ⟨sc1, sc2, . . . , scn⟩, and Kdst = ⟨dt1, dt2, . . . , dtm⟩,
where each sci or dti is a function call, and scn and dtm are the src and dst instructions,
respectively.

To determine inter-procedural dom-pdom relationships, we require a reference point
within the contextual paths of both the source and destination instructions. We call this
reference point the Nearest Common Caller (NCC) function, which is the function where the
backward paths from src and dst in their respective contextual paths first meet. We refer to
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Algorithm 1 Updation of Target Locations

Input: source src, target dst, call-strings Γsrc, Γdst

Output: updated target statement st

1 Procedure updateTarget
2 Ksrc, Kdst ← Γsrc.src, Γdst.dst

3 n, m← |Ksrc|, |Kdst|
4 comi = max1≤i≤min(n,m){enclosingFn(sci) = enclosingFn(dti)}
5 sextd ← exitDominance(Ksrc, comi, n)
6 if sextd ̸= Ksrc[comi] then
7 sr ← exitNode(enclosingFn(sextd))
8 st ← validateRelocation(sextd, sr)
9 return st

10 if Ksrc[comi] dom Kdst[comi] ∧Kdst[comi] pdom Ksrc[comi] = False then
11 ss

com ← Ksrc[comi]
12 sd

com ← Kdst[comi]
13 st ← validateRelocation(ss

com, sd
com)

14 return st

15 sentd ← entryDominance(Kdst, comi, m)
16 se ← entryNode(enclosingFn(sentd))
17 if sentd pdom se = False then
18 st ← validateRelocation(se, sentd) return st

19 return dst

the index in a contextual path corresponding to the NCC function as the NCC index. The
NCC index comi is the maximum index where the functions in the contextual paths Ksrc

and Kdst are same (formally defined at Line 4, Algorithm 1). Using the NCC function as a
reference point, the algorithm effectively models the source and destination as if they were
inlined within this common context. For instance, in Figure 8a, function f1 is the nearest
common function to both src and dst, thereby establishing it as the NCC function. Similarly,
in Figures 8b, 8c, and 8d, functions foo, foo, and main are the respective NCC functions.

Algorithm 1 transitively establishes dom-pdom relationships across the entry and exit
points of the functions involved in the paths from src to dst that pass via the NCC function,
ensuring that src instruction can be safely propagated across function boundaries. This
task can be divided into three phases, each addressing dominance at critical points in the
paths: (1) Exit Dominance (Lines 5 - 9), (2) Common Dominance (Lines 10 - 14), and
(3) Entry Dominance (Lines 15 - 19). In the ICFGs shown in Figure 8, the paths for Exit
Dominance, Common Dominance, and Entry Dominance are highlighted in green, red, and
blue, respectively. Notice that, together, these paths form a path from src to dst through
the NCC function.
Exit Dominance. First, we verify if src (Ksrc[n]) dominates the exit node of its enclosing
function fsrc, ensuring that the refined safe region for src can be extended to the call site
invoking fsrc in the caller function. The exitDominance function (Line 1, Algorithm 2)
iterates backwards from the last statement in Ksrc, checking if each statement in the
contextual path dominates the exit node of its enclosing function. If all these dominances
hold, exitDominance returns the instruction at the NCC index in Ksrc, establishing a refined
safe region for src up to Ksrc[comi]. For example, in Figure 8c, the source function bar is
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Algorithm 2 exitDominance and entryDominance

1 Function exitDominance(Ks, index, n)
2 for i ← n to index + 1 by 1 do
3 sr ← exitNode(enclosingFn(Ks[i]))
4 if Ks[i] dom sr = False then
5 return Ks[i]

6 return Ks[index]
7 Function entryDominance(Kd, index, m)
8 for i ← index + 1 to m by 1 do
9 se ← entryNode(enclosingFn(Kd[i]))

10 if Kd[i] pdom se = False then
11 return Kd[i]

12 return Kd[n]
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Figure 8 Examples for Exit Dominance, Common Dominance and Entry Dominance phase.

invoked by fun, which is further called by the destination function foo, making foo the
NCC function. The exitDominance function validates the dominance relationship between
the source node S and the exit node T of bar, and then between node Q and node U. If
all dominances hold, exitDominance returns the instruction at the NCC index (node O),
indicating that the refined safe region can be established from node S to node O. (Similarly,
in Figures 8a and 8b if nodes D and L dominate nodes E and node M, respectively, safe regions
are established up to NCC indices B and J.) If a statement at index i fails to dominate the
exit node of its enclosing function f , validateRelocation (Algorithm 3) finds a valid target
location within f by iterating from Ksrc[i] to the farthest successor that satisfies the dom-
pdom relationship. In Figure 8c, if node Q does not dominate node U, validateRelocation
finds a valid target location along the path from Q to U. Note that if src is within the NCC
function, i.e., Ksrc[comi] = src as shown in Figure 8d, the exitDominance function has no
effect, as it directly returns Ksrc[comi], the instruction at the NCC index, without iterating
through the loop. The algorithm proceeds to the Common Dominance phase only when a
refined safe region for src is established up to the instruction at the NCC index (Ksrc[comi]).

Common Dominance. This phase verifies the dom-pdom relationship between the in-
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Algorithm 3 Validation of Target Location Set

1 Function validateRelocation(stmt sn, stmt si)
2 worklist← {sn}; sc ← si

3 repeat
4 b← first(worklist)
5 worklist← worklist− {b}
6 if b = si then
7 break
8 if sn dom b ∧ b pdom sn then
9 sc ← b

10 foreach succ ∈ successor(b) do
11 if succ is not visited then
12 worklist← worklist ∪ {succ}

13 until worklist = ∅;
14 return sc

structions Ksrc[comi] and Kdst[comi] at the NCC index to confirm whether the refined safe
region for src can extend from Ksrc[comi] to Kdst[comi]. If validation fails, the algorithm
invokes the validateRelocation function to find a valid target location on the path from
Ksrc[comi] to Kdst[comi] within the NCC function. If successful, the algorithm proceeds
to the Entry Dominance phase. For example, in Figure 8a, if nodes B and F satisfy the
dom-pdom relationship, the refined safe region for src can be extended into function f3.
Similarly, in Figure 8d, if nodes W and X satisfy the dom-pdom relationship, the refined safe
region extends into foo through the Entry Dominance phase.
Entry Dominance. This phase verifies if an instruction sd inside a callee function fd (of the
NCC function) post-dominates the entry node of fd such that the refined safe region for src

can be extended up to sd. The entryDominance function (see Line 7, Algorithm 2) iterates
through the destination contextual path Kdst to validate if each statement in the contextual
path post-dominates the entry node of its enclosing function. If all these post-dominances
hold, the algorithm establishes a refined safe region from src up to dst. For example, in
Figure 8a, the refined safe region is extended till node H if H post-dominates the entry
node G. Similarly, in Figure 8d, the refined safe region for src is established till node Z if
Z post-dominates Y. If any statement at index i fails to post-dominate the entry node N

of its enclosing function f , validateRelocation finds a valid target location within f by
iterating from N to the farthest successor in f that satisfies the dom-pdom relationship. Note
that, if dst resides within the NCC function, i.e., Kdst[comi] = dst, as shown in Figure 8b,
entryDominance has no effect, as it simply returns Kdst[comi], without iterating through
the destination contextual path. Finally, entryDominance and Algorithm 1 terminate by
returning the instruction up to which the refined safe region is established for the given src.
Example. In Figure 7, source src is Line 19 and target dst is Line 8, and the contextual
paths are Ksrc = ⟨Line 19⟩ and Kdst = ⟨Line 21, Line 8⟩. Since, enclosingFn(Ksrc[1]) =
enclosingFn(Kdst[1]) = main, the function main becomes the NCC function. Here, the Exit
Dominance phase has no effect as src belongs to the NCC function (Line 19). In the Common
Dominance phase, Line 19 and Line 21 satisfy the dom-pdom relationship, confirming that
refined safe region can be extended into foo. In the Entry Dominance phase, dst (Line 8),
however, does not post-dominate the entry node of foo. Hence, validateRelocation
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Figure 9 Locations of src and dst in inter-procedural hetero-sync motion, with paths from src

to dst highlighted in bold.

identifies Line 5 as the farthest successor from the entry node, which satisfies the dom-pdom
relationship, establishing the refined safe region as K(Line 19, Line 5) and setting Line 5 as
the new destination.
Updating Target Locations Across Contexts. After identifying a dst for an src in a
specific context by means of a refined safe region, we verify its safety across different contexts.
For a src in a method m, the dst location can fall into one of the three cases (see Figure 9):
(1) dst inside a caller of m (2) dst inside a callee of m, and (3) dst inside a function f where
m and f are called by NCC function.

The first case is safe because each invocation of the source function in different contexts
maps src to a specific destination(s), such that the effect of percolation remains valid across
all contexts when percolated to the respective caller functions. The example in Figure 9a
demonstrates this with source function (fun) being invoked from two contexts (node Q in
foo and node T in bar). The source instruction at context Q has a destination at node R,
while at context T, the destination is U. Thus, percolating src to the caller functions ensures
its execution along both paths: Q→ X→ Y→ Z→ Q→ R, and T→ X→ Y→ Z→ T→ U (as
in the original program before optimization).

In the second case, relocating src to a callee can be unsafe in some cases. For example,
in Figure 9b, fun is called from two different contexts in functions foo and bar. Percolating
src (the sync statement) from P (in foo) to Y (in fun) enables computation in node X to
run in parallel with kernels launched above P along the path P→ Q→ X→ Y→ Z→ Q but
introduces unintended memory transfers along path T→ X→ Y→ Z→ T, causing correctness
issues. Hence, we percolate sync from src to the farthest node, whose enclosing function is
invoked from a single callsite. In Figure 9b node Q is the farthest location from src (node P),
with the enclosing function (foo) invoked from a single call site.

In the third scenario, where src and dst reside in functions that lack a direct caller-callee
relationship, direct percolation from src to dst can be unsafe in some cases. For instance, in
Figure 9c where function f1 invokes functions f2, f3, and f4 at nodes B, F, and M, respectively,
and f3 further invokes f4 at node H. The sync at D in f2 cannot be directly percolated to K
in f4 due to invocations of f4 from different callsites. Like in the previous case, we percolate
sync to the farthest node from src (node D), which is H in Figure 9c, where the enclosing
function (f3) is called from a single callsite.

Algorithm 4 updates target statements using contextual information by iterating over
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Algorithm 4 Updating Targets based on Context

Input: Kdst, comi

Output: st

1 Procedure updateTargets
2 n← |Kdst|
3 foreach j ← comi to n− 1 by 1 do
4 scall ← Kdst[j]
5 f ← getCallee(scall)
6 st ← scall

7 if numCallSites(f) > 1 then
8 break
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C
 l3: foo(u); 

A
 l0:cudaMemcpy(u,d_u);

(b)

Figure 10 Example of two CFGs showing the necessity of loop-based updation and unification.

the destination contextual path from the NCC index comi and checking whether the callee
function at each index is invoked from a single callsite. If a callee at a callsite scall is invoked
from multiple callsites, the algorithm updates the target to scall (Line 6), preventing the
percolation of sync statements to such callee functions. For example, in Figure 9c, with NCC
function f1 and destination contextual path ⟨F, H, K⟩, the algorithm updates the destination
to node H as the function f3, called at callsite F, is invoked from a single callsite, whereas
function f4, called at H, is invoked from two distinct callsites (nodes H and M).
Updating Target Locations based on Loops. We now discuss another kind of updating
process with an example. Suppose, in Figure 10a, the analysis identifies l1 in basic block C
as the optimal target location for the synchronization statement cudaMemcpy at statement l0
in basic block A (due to data dependency on u). While A dominates C, and C post-dominates
A, relocating sync from l0 to l1 may incur performance overhead as C is a loop-header. A
loop-header dominates its loop and is the target of a back edge forming the loop. The
statement l0, which gets executed once when it resides in A, would get executed in multiple
iterations after optimization if placed in C. Thus, we mark l0 to move to B since it is the
farthest successor from the source (A) with the same loop scope as A.

At the end of this phase, the sync instructions and their updated target locations are
stored in the map M. This map is then passed to the next phase for further processing.
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1 void foo( float * arr_output_gpu )
2 {
3 float *arr_gpu , int size;
4 ...
5 cuda_kernel <<< grid , block >>>(..., arr_gpu ); /* Device -side computation */
6 cudaMemcpy ( arr_output_gpu , arr_gpu , size , cudaMemcpy DeviceToHost ); /* barrier */
7 }
8 void bar( float * arr_output_gpu )
9 {

10 ...
11 for(int i=0; i<n; i++)
12 sum += arr_output_gpu [i];
13 }
14 void main (){
15
16 float * arr_out_gpu , * cpu_arr ;
17 foo( arr_out_gpu );
18 cpu_func ( cpu_arr );
19 bar( arr_out_gpu );
20 ...
21 }

Figure 11 Sample code showing the challenges in automated transformation.

3.3 Unifying Target Location Sets
After the previous two steps, M may still map a single src (sync statement) to multiple
destination locations. For example, in Figure 10b, the sync statement l0 in basic block A
has dependent statements l3 in C and l2 in D, both using variable u. While the first step
identifies a set of target locations {l2, l3}, the second step refines it to {l2, l1}, replacing l3
with l1 in basic block B because l1 post-dominates l0, unlike l3. However, since both l1 and
l2 are on the same execution path, relocating sync to both l1 and l2 can cause redundant
memory transfers, degrading performance. We address this issue in the current phase of our
framework by unifying all the target locations that are found and updated by the previous
two steps into a single target location. Here, we again use the inter-procedural dominance
relationship to solve the problem. Among all the target location statements given by the
previous step, GSOHC automatically selects the statement that dominates all the other
statements in them. In Figure 10b, since basic block B dominates basic block D, the final set
of target locations will contain only statement l1. That is, GSOHC outputs a unique target
location for a given sync statement in the form of a unified safe region (see Definition 8) for
performing hetero-sync motion.

4 Code Transformation for Hetero-Sync Motion

The transformation pass takes the map M and a source program in IR format as inputs
and outputs an optimized IR (see Figure 5). The map M associates a unique target location
for a sync statement in a given context. When the target location is within the same
function as sync, the sync can be moved directly before the target statement. However, if
the source and target locations are in different functions, direct percolation of the sync is
infeasible due to the unavailability of argument variables in the target scope. For example,
in Figure 11, the sync statement at Line 6 in function foo blocks potential overlap between
kernel computation (Line 5) and host-side function (Line 18). According to our analysis
step, the correct location for sync to achieve maximum computation overlap is Line 10.
Since arguments for the sync call are defined locally in foo (Line 3), relocation requires
transforming the IR to preserve these definitions across functions.

To address percolations across functions, GSOHC transforms the LLVM IR based on
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GPU NVIDIA RTX A4000 (16 GB) NVIDIA P100 (16 GB) NVIDIA A100 (84 GB)
CPU 64 × AMD EPYC 20 × Intel(R) Xeon(R) Silver 64 × Intel(R) Xeon(R) Gold

CPU @ 2.20GHz CPU @ 2.20GHz CPU @ 3.50 GHz
OS Ubuntu 22.04 LTS Debian GNU/Linux 11 Ubuntu 22.04 LTS

CPU RAM 128 GB 189 GB 84 GB

Figure 12 System configuration.

three different cases. Firstly, where the source and target functions lack a direct callee-caller
relationship, sync argument variable definitions are first relocated to the NCC function (see
Section 3), added to formal and actual argument lists of the source and target functions
and then, the sync statement is percolated to the target instruction. In Figure 11, variables
arr_gpu and size, defined at Line 3, are shifted from foo to the NCC function main,
appended to parameter lists, appended to the actual arguments at call sites (Lines 17 and
19) and the sync is subsequently moved to the target location. Secondly, if the target is
in the caller of the source function, the caller (target function) becomes the NCC function.
Therefore, unlike the first case, the sync arguments do not need to be added to the formal
and actual argument lists of the target function before percolating the sync. Thirdly, if the
sync is in the caller of the target function, the caller (source function) becomes the NCC
function. Similar to the second case, here, the argument variables of sync do not need to
be added to the source function’s formal and actual argument lists. Figure 7 demonstrates
an example where hetero-sync motion requires transformation detailed in the third case,
where the argument variables of sync (arr_gpu and size) at Line 19 are added as formal
and actual arguments of the target function foo, prior to percolating the sync to Line 5.

5 Evaluation

This section investigates the following research questions to evaluate our hetero-sync motion
optimization and GSOHC’s capability in identifying and performing this optimization.
RQ1. Can GSOHC precisely identify opportunities for hetero-sync motion? RQ2. How
efficient are GSOHC’s analysis and transformation passes? RQ3. What is the impact of
hetero-sync motion on the execution time of input benchmarks?
Implementation. GSOHC consists of two primary components: (1) inter-procedural
flow- and context-sensitive static analysis to identify hetero-sync motion opportunities, (2)
automated code transformation to perform the optimization. We have implemented our
analysis and transformation passes using LLVM/Clang-14.x [36, 31] infrastructure. An
open-source GPGPU compiler, gpucc [54] embedded with LLVM/Clang-14.x, converts
CUDA programs into LLVM IR. Our custom analysis pass works on the SSA (Static Single
Assignment) representation obtained using -mem2reg flag (which promotes memory references
into register references, resulting in a ‘pruned’ SSA). In addition, we use LLVM’s intra-
procedural Dominator and Post Dominator Tree [34], and Loop Info wrapper [35] passes.
Experimental Setup. We run our experiments on NVIDIA RTX A4000 (Ampere), NVIDIA
Tesla P100 (Pascal) and NVIDIA A100 (Ampere) GPUs. Figure 12 details the system spe-
cifications. This multi-generational GPU selection validates the robustness of our framework,
enables analysis of performance variations due to communication and computation differences,
and provides insights into its scalability across architectures.
Benchmarks. To rigorously evaluate GSOHC with respect to diverse real-world scenarios, we
use benchmark programs from benchmark suites: PolyBench [21], Rodinia [10], CUDA Sample
SDK [44], and HeCBench [25]. Although (many) host-side computations in these benchmarks
verify the results produced by GPU processors, they also exhibit complex control flows,
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encompassing nested loops, branches and aliasing behaviours, and offer rich inter-procedural
opportunities replicating real-world challenges. For example, in the entropy program [57],
a host-side function computes entropy for each matrix element using a 5× 5 window with
three nested loops, performing local histogram computation and probability evaluation using
a logarithmic operation. Section 6 provides an in-depth analysis of CPU computations and
various optimization opportunities in real-world programs. PolyBench, Rodinia and CUDA
Sample SDK are widely-used GPU benchmark suites used in recent research works [2, 1, 26],
while HeCBench is an extensive collection of heterogeneous computing benchmarks written
in CUDA [9], HIP [5], SYCL [29], and OpenMP [14] across domains like physics, linear
algebra, and machine learning (sourced from other standard suites such as Rodinia [10],
PolyBench [21], N-body simulation [48], Hetero Mark [52], CUDA Sample SDK [44], etc.).

From these benchmark suites, we identified 56 benchmark programs (listed in Figure 13)
that contain opportunities for our hetero-sync motion optimization, excluding those without
kernel or global_synchronization calls or with fewer device-side or host-side computations.
Note that our framework can also analyze programs that have no hetero-sync motion
opportunities and correctly report their absence, ensuring no false positives.

5.1 RQ1: Hetero-Sync Motion in Practice
We found 361 optimization opportunities from 56 benchmark programs for performing
hetero-sync motion.

The results of our static analysis are shown in Figure 13. The second column lists the
number of lines in the LLVM IR file corresponding to each benchmark program. In the
third column, Of represents the number of manually found optimization opportunities. Our
static analysis successfully identified all the optimization opportunities in the benchmarks,
resulting in zero false negatives. For example, in the xlqc [58] program (from HecBench), the
code computes Coulomb and exchange matrices for quantum chemistry simulations by first
calculating their primitive forms on the GPU and transferring the results to host memory. On
the CPU, two 2D contracted matrices are initialized, and GPU-computed primitive matrices
are aggregated into these contracted matrices, which are then stored in GNU Scientific
Library (GSL) data structures. GSOHC identifies an opportunity for hetero-sync motion
here, where the performance can be enhanced by overlapping GPU computations with CPU
initialization of the contracted matrices.

We have observed that many of our benchmark programs (around 48%) have synchroniz-
ation barriers spanned across different functions. Using an intra-procedural analysis would
have caused to miss many opportunities in this scenario. Moreover, optimization opportunit-
ies that span across different functions are much harder to identify manually (see Section 1).
To address this, we designed an inter-procedural, flow- and context-sensitive static analysis
framework that enables practical and effective hetero-sync motion.

Further, we thoroughly tested our analysis and transformation phases. For each benchmark
program, we recorded the source and corresponding target location sets at each phase of
our static analysis and manually verified them. We ran each program five times before and
after transformation with identical inputs, confirming identical outputs. We also manually
inspected the transformed IRs to ensure correctness of the transformation pass.

5.2 RQ2: Efficiency of GSOHC
This section presents the time taken by our analysis and transformation passes for the
benchmark programs. In Figure 13, the last column (Tan) shows the analysis time in
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suite Benchmark LOC Of Tan

Po
ly

B
en

ch
correlation 1215 6 24
covariance 885 5 20
2mm 983 11 26
3mm 1208 9 34
atax 702 6 20
bicg 775 8 47
doitgen 863 5 19
gemm 653 5 18
gemver 1127 11 39
gesummv 621 2 10
mvt 732 8 27
syr2k 668 5 18
syrk 597 4 14
gramschmidt 986 5 18
lu 654 3 11
adi 1630 7 43
2DConvolution 636 4 14
3DConvolution 916 4 16
fdtd-2d 1015 6 22
jacobi-1D 612 5 26
jacobi-2D 763 5 29
adam 1214 7 8
affine 1419 5 6
atan2 1993 11 15
bilateral 1434 9 14
bitonic-sort 604 3 5
burger 1523 4 27
car 1084 8 8

suite Benchmark LOC Of Tan

H
eC

B
en

ch

clink 1147 6 12
channelsum 9202 6 57
chemv 698 6 7
chi2 1054 5 5
conv Sep 241 3 5
dp 317 6 3
entropy 871 8 9
extrema 4635 40 63
floyd-warshall 571 5 8
keogh 637 9 9
langevin 666 7 10
lif 695 5 8
lombscargle 938 7 6
maxpool3D 464 3 6
mrc 923 11 11
mt 971 2 6
nw 1033 3 8
pool 933 3 9
rainflow 1028 3 6
rtm8 1300 3 9
s8n 1717 7 7
scel 677 5 8
shuffle 1144 22 291
snake 1679 2 11
softmax 469 3 5
stddev 509 3 4
tissue 864 2 11
xlqc 17848 9 253

Figure 13 Benchmark statistics and the results of GSOHC’s static analysis.

milliseconds. Our analysis time ranges from a few milliseconds to 291 milliseconds (measured
on the CPU node associated with the RTX A4000 GPU, see Figure 12). Further, our
transformation pass takes only a few microseconds, requiring three steps: (1) adding variables
to function argument lists and callsite modifications, (2) declaring variables in the common
caller, and (3) percolating sync to the target location.

Although the benchmark programs have similar lines of code, the analysis time for the
shuffle benchmark is significantly higher due to its greater number of hetero-sync motion
opportunities and more complex control flow (with more loops, branches, and function calls).
On the other hand, though benchmark extrema has 40 optimization opportunities, the
control flow in it is much simpler (1D loops, fewer function calls and fewer branches with no
nesting), resulting in a shorter analysis time. The data flow analysis may require multiple
iterations over the loop body, with new flow information in each iteration, taking longer to
converge to a fixed point. Therefore, the analysis time is more influenced by the number and
location of opportunities rather than program size.

5.3 RQ3: Effectiveness of Hetero-Sync Motion
Figure 14a, 14b and 14c show the performance improvements achieved by hetero-sync
motion on different benchmarks run on RTX A4000, P100 and A100 machines. We executed
each benchmark program five times before and after optimization and then reported their
arithmetic mean execution times. Our hetero-sync motion optimization achieves substantial
performance gains on all machines, with geomean speedups of approximately 1.15x, 1.17x, and
1.13x with standard deviations of 0.19, 0.20 and 0.15 (and up to 1.8x, 1.9x and 1.9x speedups
on A4000, P100 and A100, respectively) and a geometric mean performance improvement of
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(a) Speedup achieved by hetero-sync motion on HeCBench
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(b) Speedup achieved by hetero-sync motion on HeCBench (contd.)
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(c) Speedup achieved by hetero-sync motion on PolyBench

Figure 14 Speedup achieved by hetero-sync motion on various benchmark programs.
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around 11%, reaching up to 34%.
In many cases, the reduction in total execution time is also significant. Specifically, 36

benchmarks demonstrated performance improvements exceeding 500 milliseconds on the
P100 machine, with 29 of these benchmarks showing improvements of over 1 second (11
benchmarks having improvements over 10 seconds). Given that the total running times of
these programs are only a few seconds, hetero-sync motion optimization is notably impactful.
The benchmarks with higher execution times also have higher improvements in execution
time. As detailed in Figure 14b, the most pronounced improvement was observed in the
snake benchmark from the HeCbench suite, where the execution time was reduced from 368.5
seconds to 230.6 seconds, yielding a 1.6x speedup and an overall reduction of 137.9 seconds.
Further, the transformed code results in the best performance if Thost, the execution time
of identified host-side computations, and Tdev, the execution time of identified device-side
computations, are significant and are comparable to one another such that they can hide each
other’s latency. Thus, benchmarks such as extrema, bilateral, and atan2 with significant
overlaps show approximately 1.5x to 1.7x speedup with the optimization.

On the other hand, if Thost highly dominates Tdev or vice versa, the optimized code is
constrained by the dominated time and does not result in significant performance gains.
Thus the performance gains of less than 1.06x in specific benchmarks can be attributed
to an imbalanced load distribution between CPU and GPU computations. For example,
in 3mm, gemm (from Polybench), and bitonic-sort, lif (from HeCBench), the CPU-side
computations take significantly longer time than device-side computations. Thus, the
optimized code takes almost as long as the CPU-side computation, resulting in smaller
speedups. Further, we describe an interesting case in floyd-warshall benchmark program
where it does not exhibit performance improvement post-optimization. In this case, the
synchronization statement is a cudaMemcpy call present outside of a loop. However, additional
cudaMemcpy calls within the loop, occurring before each kernel invocation, cause the kernel
to block at each iteration. Since these synchronization calls are not loop-invariants, they
cannot be moved outside the loop. Furthermore, relocating the sync statement from outside
the loop body to a program point beyond the CPU computation may result in minimal
overlap between host and device computation (particularly in the final iteration of the loop),
yielding negligible speedup.

6 Case Study

Building upon the evaluation in Section 5 that demonstrates GSOHC’s effectiveness, this
section explores the broader applicability of hetero-sync motion in real-world open-source
applications. We have surveyed several top-rated CUDA/C++ projects on GitHub and
highlighted relevant opportunities in Figure 15. We present these case studies separately from
the broader benchmark evaluation to provide a focused analysis of opportunities identified
in specific real-world applications and to highlight practical insights that may otherwise be
obscured in larger-scale evaluations. Note that certain real-world opportunities are embedded
within large frameworks (rather than stand-alone programs) and benchmark suites that lack
the necessary testing environment, such as readily available datasets. As a result, even though
our static analysis pass is capable of effectively identifying these opportunities, we could not
include them in our empirical evaluation. We first present intra-procedural opportunities,
then inter-procedural opportunities.
Intra-procedural Opportunities. GraphFlow [22] (see Figure 15a), a CUDA/C++ deep
learning framework, facilitates symbolic and automatic differentiation, supports dynamic



S. K. Basu and J. Vedurada 9:23

1 void backward_pass (...) {
2 ...
3 Matrix_Multiplication_GPU <<<...>>>

(... , device_first , ...);
4 cudaMemcpy (first ->gradient ,

device_first , ... , DtoH);
5
6 /* Compute the gradient for the

second matrix */
7 for (int row = 0; row <first -> nRows

; ++ row) {
8 for (int column = 0; column <first

-> nColumns ; ++ column ) {
9 temp[ column * first -> nRows + row

]= first -> value [row * first
-> nColumns + column ];}

10 }
11
12 cudaMemcpy ( device_first , temp ,

... , HtoD);
13 cudaMemcpy ( device_second , second ->

gradient , ... , HtoD);
14
15 Matrix_Multiplication_GPU <<<...>>>

(... , device_second , ...);
16
17 cudaMemcpy (... , device_second ,

... , DtoH);
18 ...
19 }

(a) Code snippet from GraphFlow [22]

1 void divideWork (...) {
2 if( value < size) {
3 for(int i = 0; i < value ; ++i) {...}}
4 else {
5 int portion = value / size;
6 for(int i = 0; i < size; ++i) {
7 h_head [i] = i * portion ;
8 h_tail [i] = (i + 1) * portion ;}
9 h_tail [size - 1] = value ;}

10 cudaMemcpy (d_head , h_head , ... , HtoD);
11 cudaMemcpy (d_tail , h_tail , ... , HtoD);
12 }
13
14 void main () {...
15 while (!(* h_complete )) {
16 divideWork (h_head , h_tail , d_head , d_tail ,

NBLOCKS , V);
17 assignColorsKernel <<<...>>> (d_head , ...);
18 cudaDeviceSynchronize ();
19 * h_complete = true;
20 cudaMemcpy ( d_complete , ... , HtoD);
21 divideWork (...) ;
22 detectConflictsKernel <<<...>>> (... ,

d_complete , ...);
23 cudaDeviceSynchronize ();
24 cudaMemcpy (... , d_complete , ... , DtoH);
25 divideWork (...) ;
26 forbidColorsKernel <<<...>>> (d_head , ...);
27 cudaDeviceSynchronize () ;}
28 ...}

(b) Code snippet from GCOL [13]

Figure 15 Hetero-Sync Motion optimization opportunitites in real-world codes. For brevity,
cudaMemcpyDeviceToHost is abbreviated as DtoH and cudaMemcpyHostToDevice as HtoD.

computation graphs, and provides GPU-accelerated tensor and matrix operations, along with
implementations of various state-of-the-art graph neural networks. An opportunity for hetero-
sync motion optimization exists here when a code segment (in GraphFlow) uses GPU-based
matrix multiplication for gradient computation. This code initiates two kernel launches. The
first (Line 3) computes the gradient for the first matrix and synchronously transfers (Line 4)
the result back to the host, which is followed by a CPU computation (Line 9) transposing
the first matrix into a temporary data structure, which is then transferred to the device
memory along with the second matrix. The second kernel launch (Line 15) then performs
matrix multiplication, updating the gradient for the second matrix, which is subsequently
copied back to the host. In this case, performance can be further improved by overlapping
the first kernel’s computation with the CPU transposition of the first matrix. However, this
optimization is currently restricted by the synchronous host-device data transfer immediately
after the first kernel launch in the original implementation.
Inter-procedural Opportunities. We now discuss the GCOL and GCON programs from
ScoR [13] benchmark suite. Both are CUDA/C++ applications focused on GPU-accelerated
graph colouring and graph connectivity algorithms, respectively. Because these two applic-
ations share similar programming patterns, we will only discuss GCOL (see Figure 15b) in
detail. The program operates in three phases within a loop that continues until all colour
assignments are conflict-free. In the first phase, a GPU kernel (Line 17) is launched to assign
initial colours to the vertices, while in the second phase, the code launches another GPU
kernel (Line 22) to verify whether no adjacent vertices share the same colour. Lastly, a third
GPU kernel (Line 26) is invoked to forbid specific colours from being assigned to prevent
conflicts. Between consecutive phases, a host-side function is called (at Line 21) to partition
the graph data for the next GPU kernel computation. However, cudaDeviceSynchronize
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calls (Lines 18 and 23) and synchronous data transfer operations (Lines 20 and 24) after
each GPU kernel prevent overlap between the CPU’s data partitioning and GPU computa-
tions, limiting potential performance improvements. This points to a hetero-sync motion
optimization opportunity, especially since the CPU computation for workload division is
encapsulated in a separate host function (distinct from that of the source function having
sync call), indicating the need for inter-procedural optimization.

We further discuss real-world opportunities found in a GPU-based recursive filtering
application called gpufilter [3] (not shown). An opportunity for hetero-sync motion
optimization exists in a code segment that invokes three different host-side functions to
perform different Gaussian filtering on an input image. Each function first computes
the coefficients and weight vectors, followed by the creation of transformation matrices,
which include generating zero and identity matrices, transposed convolution matrices, and
performing matrix-vector multiplications. These transformation matrices are transferred to
the device memory, followed by multiple GPU kernel launches to apply the filtering operations.
Finally, the filtered image is transferred back to the host memory. The synchronous data
transfer from device to host limits the overlap between the GPU filtering process and the
CPU computation of transformation matrices for subsequent filtering, indicating an area for
hetero-sync motion optimization.

7 Related Work

Global Optimizations in Heterogeneous Computing. GSOHC relocates synchroniza-
tion calls on the host side to maximize the overlap between host and device computations.
In this context, we refer to global optimizations as those approaches that target host-side
code but improve interactions between CPU and GPU in heterogeneous systems, leading
to overall better performance. CGCM [23] improves program performance by managing
CPU-GPU communication through compiler optimizations and runtime libraries, breaking
cyclic communication patterns by transferring data to the GPU early and retrieving only
when necessary. Kessler et al. [27] proposed a static-analysis technique to reduce the number
of data transfer messages between CPU and GPU by analyzing dependence graphs over kernel
calls, reordering operand arrays in memory, and merging memory allocations of adjacent
operands. Ashcraft et al. [4] developed a compiler technique for automatically scheduling
data transfers from CPU to GPU and vice-versa based on data used within the kernel to
reduce the number of bytes transferred, leading to performance improvement.

Apart from the above-mentioned static analysis-based approaches, architectural-based or
run-time-based approaches also have been proposed to address global performance issues in
heterogeneous systems. HUM [26] has provided a run time technique that leverages CUDA
Unified Memory to overlap H2Dmemcpy time with host or kernel computation, resulting in an
overall program speedup. Kim et al. [30] have proposed a software-hardware-based approach
to improve the performance of workloads that have multiple dependent GPU kernels by
automatically overlapping the execution of such kernels and exploiting implicit pipeline
parallelism. As there have been many similar attempts to improve the performance of
heterogeneous programs, we cite a survey paper [37] that summarizes the efforts of numerous
research papers. Unlike GSOHC, which enhances program performance through hetero-
sync motion increasing CPU-GPU compute overlap, these approaches achieve performance
through other dimensions such as multi-kernel computation overlap, data transfer overlap,
and communication optimizations.
Synchronization Optimization. In the field of compilers, there is a large body of
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work [41, 19, 39, 42, 16, 15, 17, 50, 49, 43, 56, 24, 40] on reducing synchronization overheads
in the context of various programming paradigms, including Thread Level Parallelism (TLP)
programs, Task Parallel programs, and MPI (Message Passing Interface) programs.

Hetero-Sync Motion is analogous to the synchronization optimization proposed by Nic-
olau et al. [42, 43] for efficient placement of post and wait methods in a non-DOALL loop
increasing the degree of Thread Level Parallelism (TLP) in CPU programs. Because they
focus on the percolation of synchronization calls with only blocking properties, they fail to
consider the control-flow dependency of inserted wait calls resulting in duplicate wait calls
(and code explosion). This can lead to correctness and performance issues in heterogeneous
CPU-GPU systems because synchronization calls such as cudaMemcpy have both blocking
and data transfer properties. In contrast to this approach, our proposed framework efficiently
manages such scenarios with a dedicated static analysis.

Our work on hetero-sync motion optimization can be compared to works by Danalis et
al., Nguyen et al. and Das et al. [16, 41, 17], that proposed code motion techniques to
improve computation-communication overlap in the MPI programming model. However,
these approaches require matching between communication and blocking calls, can percolate
only a single blocking or non-blocking call at a time, and are limited in their ability to
extend percolation beyond another MPI call. Since a GPU kernel call can have multiple
synchronization calls surrounding it, and synchronization calls (by semantics) wait for all
previous kernel calls to finish in CPU-GPU heterogeneous systems, GSOHC requires a
data-flow analysis to facilitate the percolation of multiple synchronization calls together to
an optimal program point. Furthermore, as in the case of TLP, MPI_wait calls are mere
blocking calls, unlike the ones with data transfer in our case.

A number of past works have also proposed transformation techniques for addressing
synchronization overheads and improving program performance. Sarkar et al. [50] provided
an approximation algorithm to select an ordering of the fork operations and determine the
placement of join operations in a given program, allowing independent computations to
run simultaneously and thereby improving the overall parallelism. Zhu et al. [56] provided
a code motion compiler optimization technique to reduce the communication overhead
caused by remote reads/writes (accessing dynamically allocated data structures) in parallel
C programs. Their analysis determines the optimal communication mode (blocking or
pipelined) and propagates remote writes in the program that may be subject to coalescing.
Diniz et al. [19] aimed at redundant lock elimination to reduce lock overheads through the
percolation of synchronization calls in a parallel program. Unfortunately, however, their
approach may reduce the overall parallelism of a given program. Nandivada et al. [39]
proposed optimizations such as finish elimination, loop chunking and forall-coarsening
to reduce the number of synchronization operations in X10 programs. Nayak et al. [40]
introduces ScopeAdvice, a tool designed to detect over-synchronization in CUDA programs,
enabling performance optimization by analyzing memory access and synchronization traces
using NVIDIA’s NVBit library. The cuSync framework [24] provides fine-grained tile-level
synchronization to address GPU underutilization caused by uneven tile distribution when
the number of computation tiles is not a multiple of the GPU’s execution units, enabling
concurrent execution of independent tiles with user-defined synchronization policies. While
we also address synchronization statements to improve performance, unlike these approaches
that directly reduce synchronization overheads, our focus is on percolating synchronization
calls to enhance CPU-GPU computation overlap in CUDA programs.

In summary, the existing works on synchronization optimization are inadequate to
address the problem of hetero-sync motion due to the semantic differences in synchronization
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operations. To the best of our knowledge, our work is the first to focus on automatic
synchronization motion optimization in CPU-GPU heterogeneous systems.
Static Analyses for Optimizating Device Code in Heterogeneous Computing.
Recent efforts [51, 2, 1] focus on accelerating CUDA programs by improving GPU kernels
(device-side computations) through static analysis and compiler optimization approaches.
DARM [51] presents a static analysis-based framework that identifies and automatically
merges divergent blocks in a CFG to reduce the effects of thread divergence in device
computation. GPUDrano [1] automatically identifies uncoalesced memory accesses in a GPU
kernel code using data flow analysis. GPU Block Independence Analysis [2] represents a
static analysis framework that can automatically identify whether a GPU kernel code is
independent of the block size, allowing the compiler to tune block size to improve performance.
As GSOHC, they are all built on LLVM [31], a general framework for building compilers.
These optimizations differ from ours, but they can be effectively combined with GSOHC to
improve the performance of the input program further.
Load Balancing of Heterogeneous Workloads. The optimal performance due to hetero-
sync motion is attained when the input workload to the source program is load-balanced
across various architectures in a heterogeneous system. This can be attributed to our
framework’s ability to optimize the source code in a manner that allows/improves concurrent
execution of host-side and device-side computations. The performance study conducted
by White et al. [53] shows that their manually optimized CPU-GPU implementation with
workload distributed between CPU and GPU results in better performance. Lee et al. [32]
proposed a run time technique that enables the effective utilization of available CPU and GPU
computing resources in a heterogenous system through a workload distribution module and
a global scheduling queue. Khalid et al. proposed Troodon [28], a machine learning-based
framework that automatically schedules jobs to CPU and GPU in a load-balanced way,
increasing throughput with high device utilization.

8 Conclusion

We have developed a novel compiler analysis and optimization framework, GSOHC that
automatically analyzes CPU-GPU heterogeneous programs and relocates poorly placed
synchronization barriers within them. This optimization, which we named hetero-sync
motion, facilitates overlapping CPU and GPU computations, thereby improving program
performance. GSOHC consisting of three distinct phases employs an interprocedural context-
and flow-sensitive data-flow analysis to accurately identify optimization opportunities in the
input programs. We have also performed an evaluation of our framework on 56 benchmark
programs drawn from several widely-recognized benchmark suites. Our evaluation shows that
our static analysis can successfully identify all the actual optimization opportunities within
these benchmark programs. Furthermore, our evaluation confirms significant performance
improvements in the optimized code, underscoring the practical impact of our approach.
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